Top Ten Reasons why Seneca Learning is awesome.

With lots of teachers, leaders and schools getting used to remote learning, Seneca Learning has certainly helped me.

I have known about Seneca for about 2 years. I was lucky enough to be asked to write some of their KS3 content and promoted its use among colleagues, striving to become a Seneca Learning Pioneer school.

See my blogs and classroom based inquiry here:

Seneca Learning: The Start of the Journey…..

Seneca Learning – classroom based Inquiry: The Questionnaire

During these past few weeks and months as the COVID-19 pandemic has hit schools, Seneca has really stepped up.

These are my top 10 reasons why Seneca Learning is a great remote learning tool to have in the back pocket.

  1. Students ( and teachers) really find it refreshing. So far, very few students have got moaned when I mention Seneca Learning. The online resource really has something for everyone. To add to the mix, they listen.
  1. Teachers and students are constantly suggesting ideas to Seneca, which are quickly implemented. The customer service in my experience is second to none.
  1. It doesn’t matter if you have a class of higher prior attainers or lower prior attainers, they can all access it. Admittedly the lower prior attainers struggle the most, but the programme allows them to go through it at a slower pace and of course use other supportive resources at the same time.
  1. The resource can be access on a range of devices and the courses / units can are short, sharp and to the point. The fact students can repeat and redo to improve is excellent. Personally, I enjoy using it more and more as a tool for CPD on my own mobile phone.
  1. CPD – the teachers CPD is a quality resource and is evidence informed from some of the great teachers and leaders on twitter and beyond. They include:

  1. Student love the competition between each other in their classes and year groups. This acts as great motivation for learning and revision
  1. Students really get on board with the nation and international revision tournaments. My students last year racked up 1000s of extra hours of revision across all subjects – this can only be a benefit in their preparation for their GCSEs.
  1. Progress overviews – one the latest and much needed additions to Seneca are the progress exports, you are able to download and analyse data straight away to see how your students are getting on and so plan for intervention.
  1. The main attraction for me is that it uses cognitive sciences to evolve its platform. The evidence based research is second to none. This is one of its biggest selling points.

Our Neuroscience Experts

We work with top neuroscientists to continuously improve our platform. Our research has found that students learn 2x faster using Seneca compared to a revision guide. This groundbreaking research involved 1,120 students and was published in the peer reviewed academic journal IMPACT. We also provide free CPD courses for teachers to help apply these practices in the classroom.

  1. Its free. Seneca wants to remain free. The cynics among you may point out that there is a premium package. I personally have not explored the paid for premium sections, however I know students that have paid for the extras and they have been generally pleased.

How do you find Seneca Learning?

let me know

Trivium Tutor Time Challenges (tutor time activities part 2)

“Trivium: Latin for “three roads” refers to the three stages of learning: grammar, dialectic and rhetoric”

                                                                                             CCEMA

The idea of ‘trivium’ first struck a cord with me after reading this blog from Tom Sherrington. In the article Tom explores the book “Trivium 21c: Preparing young people for the future with lessons from the past” by Martin Robinson.

I was not in a position to implement these ideas across a whole school however I was keen to see how I could embed the ideas of Grammar, Dialectic & Rhetoric into my teaching to raise achievement in my lessons. I was and am still also conscious it should be a skill set that is cross curricular and so as Head of Year I inserted these ideas in my tutor time, in what I named so aptly tutor time challenges.

The vision of these challenges that I have sold to tutors and the year group is that – this is your chance to learn stuff that isn’t always on the curriculum but could win you a fair amount on a quiz show like ‘who wants to be a millionaire. Of course, there is so much more to it than that. I have found it is a brilliant opportunity of students to explore learning (work out which methods of learning really work for them and be able to make mistakes in a low pressure environment out side of the classroom) and to reflect on these mistakes. This links in nicely with our metacognition and self regulation whole school focus. I want tutor time to be organised, productive and worthwhile – this fits the bill nicely.

The challenges have so far initially designed by myself and have included the NATO phonetic alphabet, learning the states of America and capitals of Europe. Topics are also being designed by tutors in their fields of expertise such as PE (Olympic based), History (Kings and Queens)   A period of learning time is given to students in groups and after which they are quizzed on the topic. I then asked tutors to mark the quizzes and I hand out little prizes for the winning group in each tutor group.

So far different students have won, as the expertise can come from anywhere. Some tutors have told me how suddenly some students have really come out of their shell when studying certain topics and others have shone as it is linked to a passion or experience out side of school (Phonetic alphabet for those that go to cadets for instance).

So you may ask how is this linked to Trivium?

triv

  • Tutor group challenges – using Trivium ideas
    • Grammar –> Knowledge –> Teacher Input: The Capital Cities of Europe
    • Logic –> Understanding–>Student discussion, collaboration + learning
    • Rhetoric –> Wisdom–> Output: Application of Logic

We start with the Grammar! The Knowledge this can a be heavy tutor input to begin with however once the students have the notes they move on to the Dialectic. Dialectic, starts with the discussion of how best to learn the information. This dialectic or logic, is when students can really start to independently put ideas together. This needs to be practiced – retrieval practice; self quizzing; group quizzing to gain wisdom or rhetoric.

Today I took a tutor group for registration and went through the current challenge The Capital Cities of Europe. One student knew them all, he printed off a list at home and read and quizzed himself on them. I could not have been more impressed.

See some examples of what I have created so far and use them yourself – including quiz sheets  (downloadable from TES)

Learn the NATO phonetic alphabet

Learn the United States States

Learn the European capital cities

See other ideas to do in tutor time here

A to Z of Cognitive Science

Using research and making use of evidence from cognitive science to inform education is now becoming a hotly debated topic on platforms such as twitter and more and more educational companies are using the ideas to support students. Educational companies such as   who are soon to hit million subscribers are a front runner in using these techniques and not forgetting the team at who post engaging videos, educational blog posts and enlightening strategies that teachers can use quickly.

I have compiled an A to Z to help those that a new to this research and of course those old hands who may need a refresher.

AAce That Test from the Learning Scientists. A team of brilliant cognitive psychological scientists who research the science of learning. Their blog posts are a must read for all teachers as well as parents/carers and students alike. They have a vision of sharing scientific research and making more accessible – they have certainly do that. I have been lucky enough to see them present at a teachmeet organised by the  in 2017 and they completely transformed my thinking around education. The team can also be found on twitter separately – they are all well worth following.

B – Blake Harvard – The Effortful Educator https://theeffortfuleducator.com/ . Blake is an American teacher however has some very useful blog posts on applying cognitive science to education. Blake can also be found on twitter here ]

C – Concrete ExamplesOne of the famous 6 strategies highlighted by as a method to help students to study effectively.  Concrete examples are used when we need to understand an abstract idea.

 

D- Dual Coding – using visuals and text simultaneously so the information is encoded into long term memory. I have further blogs on this topic:

and recommend you follow on twitter as the dual coding oracle.

E – Efrat Furst – Dr Furst does a fantastic job at communicating and promoting cognitive sciences to education. She teaches out of Harvard University and her research-informed strategies have transformed many a classroom. Follow Efrat on twitter

F- Flávia S Belham PhD– The chief scientist behind applying cognitive science to education. Sign up to Seneca as a teacher/student/parent HERE and follow Dr Belham on twitter

Seneca has a great cognitive science course for teachers that I very much recommend. My certificate for this is proudly on the wall of my classroom.

G – Google Scholar. There are lots of ideas in cognitive sciences and you will have your favourite techniques and strategies. Google scholar searches academia for research and if possible gives a link for a free PDF download. It is well worth exploring this. For example “retrieval practice classroom ” gives some excellent results.

H – Henry Roediger III – Professor Roediger researches aspects of human memory, how knowledge is retrieved and how this can be applied to enhance education. His work on the testing effect with Dr Jeffrey Karpicke has changed teaching for the better.

I – Interleaving – one of the 6 effective study strategies for students by the learning scientists. Interleaving is a method of revision that suggests you mix up topics during your revision schedule and is often combined with spaced practice. There has been lots of debate on best to interleave, Mark Enser does well to explain how to embed this into the curriculum planning as interweaving.

J – Journals – Keep education evidence informed by reading. Research schools do a great job of passing on snippets and research however I believe it is important for all teachers to read and improve, we expect students to do it after all. I currently subscribe/read two accessible journals that are written by teachers for teachers. One of which is IMPACT from The Chartered College of Teaching and the other is ResearchEd – I fully recommend them both.

K – Karpicke, Professor Jeffery Karpicke has researched and written extensively on retrieval based learning, metacognition and cognitive strategies. One of his most ground breaking papers was co authored with Phillip Grimaldi on retrieval based learning

Karpicke, J.D. and Grimaldi, P.J., 2012. Retrieval-based learning: A perspective for enhancing meaningful learning. Educational Psychology Review, 24(3), pp.401-418.

L – Long Term Memory – After we have encoded and consolidated information in the long term memory our ultimate aim would be to retrieve it.

M – Metacognition and Self Regulation  -a cost effective way of raising standards across your school. The Education Endowment Foundation have produced this guidance report to help support teachers in embedding metacognition. Lots of research is being done on metacognition and it is well worth thinking about how you can embed into your pedagogy.

N – Neuroscience – Neuroscience is the study of the brain and cognition is about acquiring knowledge and developing understanding.  There is a great blog here by   

  has a nice video here

O – Online Platforms –Seneca Learning has been developed using cognitive science and is a platform that many students across the country are enjoying and benefiting from. I have blogged about Seneca here.

Plickers is a brilliant and free quizzing tool in which you can collect in data from retrieval quizzes.

P – Pooja K. Agarwal – Dr Agarwal is an assistant professor at Berklee College of Music teaching psychological sciences. She is also the founder of retrievalpractice.org collaborating with Henry L .Roediger III. Pooja has a great insight into cognitive science and retrieval and can be found on twitter  and

Q – Questions / Elaboration –Elaboration is one of six strategies named by the learning scientists in order to help students to study effectively. Elaboration is adding detail to what you know by questioning yourself. Why has this happened? How has this happened?

R – Retrieval Practice – another of the 6 strategies named by the Learning Scientists.The testing effect has long been researched and the simple conclusion is the more  you self test and quiz the better you will do. This should be done over a period of time (see spaced practice) and is the opposite to cramming and just reading material. I have written further blogs on retrieval practice and ideas of how to implement strategies here.

S – Spaced Practice- another of the 6 strategies named by the Learning ScientistsThis is the opposite to cramming. I have created a few resources for my students to use.

Good flashcard revision will not only support spaced practice but also retrieval.

 

 

 

T- Teachers & Twitter – on the front applying and testing these strategies need to be in the A to Z. Twitter is full of educators that are passionate in the application of research informed learning, some of which are mentioned in this A to Z. Twitter really is the best CPD out there and if you want ideas to implement a strategy, twitter is a supportive environment for you to ask the questions. #cogscisci is a great place to start

U- Untested and Unproven theories  (Neuromyths and Neurononsense)Brain Gym/VAK learning styles/ left and right side of the brain misconceptions – you name them and education has  –Dan Willingham has a brilliant and is active on twitter. See here a collection of articles that Dan has written which really are a must read for any teacher.

V – Volume keep it low. There is lots of conversation at the minute around if student talk is productive. Should students work bu collaborating in groups? is this effective? This is another great blog by Mark Enser “what does learning sound like?” and others from noise” and The power of silence

W – Working memory – working memory is the short term memory that is utilised when we are manipulating data of some kind. Once finished with it is either forgotten or encoded to the long term memory.

X – X-Amples from Rosenshine Principles of Instruction. Another must read for all teachers nicely summed up by in this blog and the research article by Barak Rosenshine 

Y – Years – how long facts will stay in your long term memory if you apply the strategies (hopefully…well that is the idea anyway)

Z – Zest and Zig Zag– From the zest of discovery and knowledge many teachers are now changing direction – zig zagging – in how they approach teaching and learning and their application of cognitive science in lessons.

Happy to take further suggestions – find me on twitter here

20 ideas & strategies for Student Led Dual Coding

Dual Coding in very simple terms is combining visuals/graphics with text/verbals. What it is not is having complicated pictures with lots going on next to powerpoint text and detailed drawings next to every sentence. The idea behind Dual Coding is that will reduce any cognitive load rather than put more stress on the working memory. Dual Coding if completed well should enable the memory to encode easier and so you are able to retain information in your long term memory; this in turn can be recalled during retrieval. I have written a few short blogs on retrieval practice here:

Much of what I have understood from dual coding has come from and the following research papers:

Much of what dual coding is and can be makes sense. I have also thought while teaching that if students are writing notes while you are teaching they may miss content and lack understanding and  I do not let students write notes will watching videos unless we play it twice. I now try not to overload the working memory by putting ‘complicated diagrams/ on presentations next to text as it will divide attention and I do not fill slides with pointless images that are just there to engage the learner. What is important is that the images and visuals are accompanied with text that represents the image.

I have put the following together some ideas of how you could use dual coding in your classroom. Not all of these ideas may work in your setting and will I am sure be more suited to some groups of students than others.

  1. Mindmaps

Students often get carried away by mindmaps – either that or never set sail only to write and colour a lovely title. If they do produce a mindmap, more often than not it is information and cognitive overload and loses its purpose. Mindmaps need to be kept simple, so students in the long run are able to self quiz using them. Set students a challenge that all branches need to be a certain colour, they must include diagrams, pictures and sketches and give them a maximum word count.

2. Annotated Diagrams

In science we use lots of diagrams to help explain concepts, ideas and phenomenon. Most if not all diagrams need further labels – but do we as teachers think hard enough as hard enough about how we label as much as what we label.

To reduce cognitive load it is important that labels are labelled within the diagram rather than attached to lines pointing to the correct parts or with labels in a box next to it labelled with a, b, c etc. There is a nice blog here explaining this with a great example by

3. A to Z

I have created this resource which is free to download from TES which allows for great retrieval as well as dual coding. Students use the letters A to Z to write a keyword or term for the topic of choice and then the students are able to draw or sketch something that represent the keyword.

4.Pictionary

Students write their own or are given a list of keywords. The game can be played various ways students could draw it while other guess it, or one student shows to the word to a group but can not see it themselves. Other groups members then draw it and the student that has the word has to guess what it is. The teacher could also instruct students to draw various concepts on mini white boards as a starter.

5.Story Board

Allow students to create a story board to help explain concepts. Download my template for free here.

6. Comic Strip

Similar to the story board but allow students to create their own comic strips or add text to pre-drawn comics such as these

7.Make it visual

Adding a diagram or two difficult to grasp concepts. I made a resource to support the teaching of GCSE Energy – stores and pathways. Students find this concept difficult to grasp and so I decided on creating this.

8.Put data in tables

Recently I was writing an email to colleagues regarding data entry and half way through I re-read what I had written and found it confusing. It was then, I created a table to put the data in – It took less time, made much more sense but more importantly allowed the information to be encoded a lot quicker. This is one of the reasons why we create tables in science, how else would you be able to organise thousands of data points?

9. Venn Diagrams

Organise data in a visual way – makes learning and reviewing knowledge so much easier. Mitosis Vs Meosis, alkane Vs alkene to fusion to fission

venn

10. Timelines

Timelines are a brilliant strategy to organise dates and times that other wise would take a lot of working memory to manipulate. I have used timelines in science to visually represent the changes to the atomic model and the stages of the big band. History teachers I am sure are already all over this!

11. Infographics

I often create infographics by accident. I start off wanting to create a mind map but end up with an infographic. I see the infographic as a mindmap without the structure, but not lacking structure and information that it can be classed a poster.

infographic

12. Flashcards

I have blogged about the use of flashcards here:

and I suggest you spend 5 minutes reading this.

13. Double Bubble Thinking Maps

These are a great tool like the venn diagram if you are wanting to compare and contrast ideas. Unlike the venn digram which could be used for 2+ ideas, the double bubble would just be used to explore the similarities and differences between two things.

doublebubble

14. Fishbone Thinking Map

This type of analysis diagram is used when ideas can be quite complex and may cause conflict with one another. It can be seen as  more structured form of a mindmap.

15. Flow Diagrams

If you have lots of ideas that are a sequence of events a flow diagram is a useful way of getting your thoughts on paper in a visual format. I have most commonly used this when I have asked lower attainers to write a method for a scientific experience, they find a flow map easier to understand than just listing instructions.

16. Foldable / Interactive Notebooks

A few years ago I started to create interactive notebooks which I noticed were very popular other in America. The aim of these foldables were that would help support students in getting to grips with concepts and ideas. the resources are far more engaging than just drawing a 2D diagram in an exercise book. These resources can be found here:

17. Visual Methods /Integrated Instruction 

I have always tried before a practice to make sure I have shown students a clear demo, which is left complete and used as a reference point if possible. I will also put written instructions on the board which students can use. It was twitter that pointed me in the direction of his brilliant blog and chemix.org

Reducing cognitive load and adding dual coding to a method can only benefit students.

18. Sketchnoting

Sketchnoting is the art of adding graphics and visuals to notes instead of writing them all in words. The Naked Scientists have produced some great videos in the past using the art of sketch noting and it is explained very well in this article by 

19. Tree Maps tree

I have used tree maps in classification type activities and decision making activities. I have used examples of these in the past when teaching the rock cycle. Does the rock dissolve in acid – if yes go to A if no got B. They can be also used to classify categories such as the classic image of the kingdoms in biology.

20. Cycle Diagrams 

These are created as flow maps however the steps can feed back into each other. They can make complex ideas seem connected. Examples can be like these:

For further reading click here

http://www.learningscientists.org/blog/2017/2/5/weekly-digest-45

14 Research Papers on Dual Coding

Kate Jones has a brilliant overview and more links to dual coding which you can find here.

Any more ideas to add – let me know on Twitter.

OliCav has written this great book. Buy a copy here – click on the book image.

Image Google images: Commons; label for reuse but with thanks to &

Mid Topic Retrieval Quizzes to aid metacognition

Retrieval Practice is a strategy I wish I embedded into my practice very early on in my teaching career. It has only been in last year or so, that I have embraced the technique and tried to implant it into my everday teaching.

I first read about retrieval from IMPACT, a journal I receive as a founding member of the Chartered College of Teaching. [Interim Issue, May 2017 & Issue 1, September 2017] . I have written further blogs on retrieval practice.

 I really caught the bug after I saw so many teachers sharing retrieval grids on twitter based on the design by Kate Jones   – see her blog about this here. 

I created my own grids and you can find examples here of ones I have upload to TES and free to download here. I even got students to create their own to self quiz each other – the template can be downloaded here.

The grids do take  time to create and it was a lightbulb moment when I saw Adam Boxer was collating what he called ‘retrieval roulette’ activities. If you have not come across this as yet, I fully recommend that you take 5 minutes to explore this page on his blog. 

It has become ingrained for students to enter my lab, turn to the back of their books (BoB) and complete theebbinghaus-diagram 6 questions for a low stakes assessment. If they do not know the answer – I now get them to write the question out as well. This example of routine self quizzing is a win win starter and is linked to the “Forgetting Curve” which was first described by Hermann Ebbinghaus. Ebbinghaus explains that information is lost over time and in order to “recall” this information we must first “retrieve” it. He also suggested that if you have forgotten something and then retrieve it, it will stay in your memory for longer. I use this idea, and idea of retrieval practice which is explained very well with downloadable materials by . Why Retrieval works by   is also a recommended  read.

Step forward a few months. Our CPD across my school for this academic year is based on applying ‘metacognition.’ While I reflected about how I use and can better embed metacognition in my own lessons, the more I saw the links between retrieval and metacognition. I did not want students just to experience teacher led retrieval but know which strategies work best for them and support their learning. Karpicke (2009) shows that students do not retrieve often or early enough, so I wanted to make sure students were self-reflecting at every learning opportunity.

I have used plickers in the past to assess progress (  Using Plickers to assess for Mastery ) however for this I wanted something more substantial in their books. I wanted it to cover retrieval, metacognition and teacher feedback to aid my workload and to inform my future planning. I decided upon a mini quiz half way through a topic and trailed it with a year 9 triple science class. The topic in question was from AQA Physics  “the Particle Model of Matter.” I created a 20 question quiz that I uploaded to TES for you to download. If I was lazy I could that used the questions I use at the start of lessons however I wanted fresh questions. We then self marked these questions and I allowed time for student reflection.

What has gone well?

Where are my knowledge gaps?

Why have I got knowledge gaps?

Am I able any strategies I have used to content I have remember to content I don’t remember?

How else am I able to learn?

This ticked the boxes in my own 3 step success criteria:

Retrieval Practice

1)      Students had a ‘surprise’ quiz with no access to books

2)      Questions were just from the topic we were studying some of which had been taught by a student teacher. (5 from Kinetic Theory, Specific Latent Heat, Specific Heat Capacity and Density)

3)      Questions were self assessed

4)      I decided to record the score when I gave written feedback

Metacognition

5)      Chance to reflect on what is going well so far in the unit of work

6)      Identify knowledge gaps

7)      Link knowledge with their topic checklists. See how I use checklists with my classes here.

8)      Give the students chance to reflect on how they have learnt

9)      Aid reflection on how to transfer useful skills and strategies

Assessment

10)   I have printed this out on yellow paper (school policy)  so they are the building blocks of any written feedback I give to students.

The feedback I have written as been quick and to the point so will hopefully allow for more learning. The weaker areas of the topics will be explored in more detail in future lessons as retrieval based starters such as these 20 starter activities to stretch & challenge students

I gave out to students as a surprise ‘test’ or ‘quiz’ as I called it as I thought it would really see the impact of retrieval. I have not told students yet, but I plan to issue the same quiz out again after term to see the effects. (More on this later). I may also complete further mid topic retrieval quizzes after I have instructed students to complete various topics on Seneca Learning to see if that makes a difference as well. There are lots of different pathways where this could go, I am sure I will blog the results in the future.

retreival mid termretrieval practice mid term

Karpicke, J.D (2009) Metacognition Control and Strategy Selection: Deciding to Practice Retrieval During Learning. Journal of experimental Psychology. 138(4)469-486.

Follow me on Twitter for future updates: